CB Open 2024 Problem 3 - Another Number Theory Problem
ran out of novel problem ideas, so he is going back to the basics.
Given a integer \(N\), count the number of unordered integer triples \((a, b, c)\) such that \(a \cdot b \cdot c \le N\).
Constraints
\(1 \le N \le 10^{10}\)
Input Specification
The first line will contain one integer \(N\).
Output Specification
Output the number of triples satisfying the equation.
Sample Input 1
6
Sample Output 1
8
Explanation
The triples are: \((1, 1, 1)\), \((1, 1, 2)\), \((1, 1, 3)\), \((1, 1, 4)\), \((1, 1, 5)\), \((1, 1, 6)\), \((1, 2, 2)\), \((1, 2, 3)\),
Sample Input 2
100820
Sample Output 2
1347914
Comments