## Count Divisors (Extreme)

Given a positive integer \(N\) please determine the number of unique divisors of \(N\).

An integer \(X\) is a divisor of \(N\) if there exists an integer \(K\) where \(X \cdot K = N\).

**Note: The constraints are updated in this problem. For C++ and Java users please make sure to use 64-bit integers to store the input without overflow.**

#### Input Specification

The first line of the input will contain an integer \(N\) \((1 \le N \le 10^{18})\).

#### Output Specification

Output an integer representing the number of unique divisors of \(N\).

#### Sample Input

`9`

#### Sample Output

`3`

#### Sample Explanation

The divisors of \(9\) are \(1\), \(3\), and \(9\).

## Comments

hugs for everyone!